翻訳と辞書
Words near each other
・ Aozora Bank
・ Aozora Bunko
・ Aozora Kataomoi
・ Aozora ni Yureru Mitsugetsu no Kobune.
・ Aozora no Kakera
・ Aozora no Namida
・ Aozora no Shita, Kimi no Tonari
・ Aozora Pedal
・ Aozora Records
・ Aozora tenshi
・ Aoös
・ AP
・ AP (rapper)
・ Ap (water)
・ AP 42 Compilation of Air Pollutant Emission Factors
Ap and Bp stars
・ AP Art History
・ AP automatic transmission
・ AP Bank
・ AP Bhavan
・ AP Biology
・ Ap Bokto
・ AP Calculus
・ AP Capstone
・ Ap Chau
・ Ap Chau Mei Pak Tun Pai
・ Ap Chau Pak Tun Pai
・ AP Chemistry
・ AP Chinese Language and Culture
・ Ap Chuni Dorji


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ap and Bp stars : ウィキペディア英語版
Ap and Bp stars
Ap and Bp stars are peculiar stars (hence the "p") of types A and B which show overabundances of some metals, such as strontium, chromium and europium; in addition, larger overabundances are often seen in praseodymium and neodymium. These stars have a much slower rotation than normal for A and B-type stars, although some exhibit rotation velocities up to about 100 kilometers per second.
==Magnetic fields==
They also have stronger magnetic fields than classical A- or B-type stars in the case of HD 215441, reaching 33.5 kG (3.35 T).〔(Babcock, H. Astrophysical Journal, vol 132, p 521, 1960 )〕 Typically the magnetic field of these stars lies in the range of a few kG to tens of kG. In most cases a field which is modelled as a simple dipole is a good approximation and provides an explanation as to why there is an apparent periodic variation in the magnetic field, as if such a field is not aligned with the rotation axis—the field strength will change as the star rotates. In support of this theory it has been noted that the variations in magnetic field are inversely correlated with the rotation velocity.〔(Landstreet, J. et al. Astronomy & Astrophysics, vol 470, p 685, 2007 )〕 This model of a dipolar field, in which the magnetic axis is offset to the rotation axis, is known as the oblique rotator model.
The origin of such high magnetic fields in Ap stars is problematic and two theories have been proposed in order to explain them. The first is the ''fossil field hypothesis'', in which the field is a relic of the initial field in the interstellar medium (ISM). There is sufficient magnetic field in the ISM to create such high magnetic fields—indeed, so much so that the theory of ambipolar diffusion has to be invoked to reduce the field in normal stars. This theory does require the field to remain stable over a long period of time, and it is unclear whether such an obliquely rotating field could do so. Another problem with this theory is to explain why only a small proportion of A-type stars exhibit these high field strengths. The other generation theory is dynamo action within rotating cores of Ap stars; however, the oblique nature of the field cannot be produced, as yet, by this model, as invariably one ends up with a field either aligned with the rotation axis, or at 90° to it. It is also unclear whether it is possible to generate such large dipole fields using this explanation, due to the slow rotation of the star. While this could be explained by invoking a fast rotating core with a high rotation gradient to the surface, it is unlikely that an ordered axisymmetric field would result.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ap and Bp stars」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.